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1. Background
a. My background
b. Digital solutions in global health
c. CommCare /mobile apps for global health

2. Artificial Intelligence

a. What is AI? What is Machine Learning?
b. Uses of Al for global health

c. An example from Mozambique

Main message: Digital has huge potential, but is not a magic
bullet. Need to have the right expectations. Same for AL



Quick Orientation

* Digital Health: use of digital technology to improve
global health efforts, e.g., electronic medical record

systems, supply chain systems, mobile apps, messaging.
Note: some divide digital health into ‘eHealth and ‘mHealth’

°* FLW Digital Platforms: a subset of digital health that
focuses on equipping Frontline Workers (FLWs) with
apps.

* Artificial Intelligence in Global Health: the use of a
certain, increasingly popular algorithms (Al) as an add-on

to existing digital health interventions. Often require data
as 1nput.



Crawl, Walk, Run

(with your data)

Consistent Data Use




My background

1991-1997
1997-2004

2004-2005
2005-2009
2011-2012

2008-now

Got PhD in Artificial Intelligence

Published many papers in Al and Human-Computer
Interaction

Left research world, got an MPH
Lived in East Africa, worked on many data systems

Co-founded community-driven org, Spark
Microgrants

Helped scale CommCare



Unsuccesstul report (2005)

weeks W
on H | sep-
date | arv | ARV WT | HT HGB | ALT | cd4 | cd4% (vl| O | trin | TB | acute problem
23DECO4 27.21 1320 133 3| no| no|none
19JANOS 10.8 32 3
02FEBO5 NOT b/c: exr shows tb 27411320 3| yes| no|BOILS ON THE FA
adenitis
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23JUNOS 4 | AZT200/3TC110 27511375 9.3 yes | vyes | COUGH
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24JUN035 4 55
22JUL05 8 | d4T200/ 3TC104/ 26011371 101 no | no | none
NVP200 BD
23JULO5 3 51




Successtul report (2000)

Consultation. 04 Nov 2006
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Digital in Global Health

April 17, 2019

RECOMMENDATIONS

ON DIGITAL _
INTERVENTIONS WHO releases rejcommendatl.o.ns on 10
FOR HEALTH SYSTEM ways that countries can use digital

STRENGTHENING health technology.

“Harnessing the power of digital
technologies 1s essential for achieving
universal health coverage,” says WHO

Director-General Dr Tedros Adhanom
Ghebreyesus.




Recommendations #6-8

CONTRIBUTION
TO UNIVERSAL HEALTH
COVERAGE (UHC)

DIGITAL HEALTH
INTERVENTION

RECOMMENDATION

Contact coverage

Continuous
coverage

RECOMMENDATION 6

Targeted client
communication via
mobile devices

WHO recommends targeted client communication via mobile devices
for health issues regarding sexual, reproductive, maternal, newborn,
and child health under the condition that potential concerns about
sensitive content and data privacy can be addressed

(Recommended only in specific contexts or conditions)

Effective coverage

RECOMMENDATION 7

Health worker

decision support via
mobile devices

WHO recommends the use of decision support via mobile devices for
community and facility-based health workers in the context of tasks
that are already defined within the scope of practice for the health
worker.

(Recommended only in specific contexts or conditions)

Effective coverage

Accountability
coverage

RECOMMENDATION 8

Digital tracking of
clients' health status
and services (digital
tracking) combined
with decision
support

WHO recommends digital tracking of clients’ health status and
services, combined with decision support under these conditions:

in settings where the health system can support the
implementation of these intervention components in an integrated
manner; and

for tasks that are already defined as within the scope of practice for
the health worker.

(Recommended only in specific contexts or conditions)




Comm¢Care




Comm¢Care

1. HIV Knowledge

Progress Check

Glossary



Comm¢Care
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Growth of CommCare

active users
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Large Scale in India
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Another Cautionary Tale

CHW Performance Over Time

1.0
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B. DeRenzi, L. Findlater, G. Borriello, J. Jackson, J. Payne, B. Birnbaum, T. Parikh, N. Lesh,
“Improving Community Health Worker Performance Through Automated SMS”, ICTD 2011, to appear



Detinition of Artificial Intelligence

“the use of computers for automated decision-
making to perform tasks that normally require
human intelligence.”

From a recent report entitled “Artificial Intelligence in Global Health Detining a
Collective Path Forward”, by the Rockefeller Foundation, USAID, Center for
Innovation and Impact, and Bill and Melinda Gates Foundation.



Uses of Al

General
e Detect fraud

* Predict customer
behavior

* Optimize operational
processes

* Segment consumers and
tailor marketing

FLQ Digital Platforms

Identity FLLWs who
submit suspicious data

Identity high risk clients
Reduce stock outs

Segment clients to tailor
behavior change
communication



Building Blocks of Al

DATA PROCESSING ACTION

€)

ABCDE
FGHIJK
LMNOP

Computer vision

Automated methods used to
conduct image-based inspection
and analysis

Speech recognition
Computerized identification and
response to sounds produced in
human speech

Matural language processing
Processing and analysis of large
amounts of data written in natural

language (eg. narrative)

¥

Information processing (in Al)
Processing of digitized data in ways
parzllel to human brain functions

Machine learning
Pattern recognition that learns and
improves from experience without
being programmed

Planning & exploring agents
Lise of Al for strategies or action
sequences by agents, robots, or
unmanned vehicles

©

iy

Image generation
Automated creadon of images
using Al

Speech generation
Automated generation of

human-like speech using Al

Handling and control
Automatic handling of objects using
Al methods

Mavigating and movement
Autonomous movement and
navigation informed by Al

Artificial Intelligence in Global Health Defining a Collective Path Forward”, by
the Rockefeller Foundation, USAID, Center for Innovation and Impact, and
Bill and Melinda Gates Foundation.



Dimagi Al Priorities

DATA PROCESSING ACTION

)

ABCDE

LMNOF

Computer vision

Automated methods used to
conduct image-based inspection
and analysis

Speech recognition
Computerized identification and
response to sounds produced in
human speech

Matural language processing
Processing and analysis of large
amounts of data written in natural

language (eg. narrative)

Adding Chatbot
to FLW apps

%

Information processing (in Al)
Processing of digitized data in ways
parallel to human brain functions

Machine learning
Pattern recognition that learns and
improves from experience without
being programmed

Planning & exploring agents
Use of Al for strategies or a:tion
sequences by agents, robots or
unmanned vehicles

Predictive Analytics

T

ety

with Machine Learning

Image generation
Automated creadon of images
using Al

Speech generation
Automated generation of
human-like speech using Al

Handling and control
Automatic handling of objects using
Al methods

Mavigating and movement
Autonomous movement and
navigation informed by Al



FILW Use Case #1: Chatbots

Idea: Extend a FLW app with a direct-to-
client (d2c) experience that engages clients
after FLLW encounter, using a persona and
natural language processing (NLP).

Examples:
— Adherence Bot for HIV/TB care
— Follow up after IMCI session

— Nutrition counseling to augment Growth
Monitoring

Poshan Didi
Chatbot



FILW Use Case #1: Chatbots

Idea: Extend a FLW app with a direct-to-client
(d2c) experience that engages clients after FLLW
encounter, using a persona and natural language

processing (NLP).

Opportunities:

— Deliver existing content in a way that will
be more engaging for many clients

— Strengthen health system while making
care more consumer centered

— Extend range of services, e.g., possibly
mental health counseling

_ﬁ’/j\
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FILW Use Case #1: Chatbots

Idea: Extend a FLW app with a direct-to-
client (d2c) experience that engages clients
after FLLW encounter, using a persona and
natural language processing (NLP).

Challenges:

— Literacy / speech recognition in local
languages

— Phone availability / Smartphone

penetration

— NLP for local languages

7/
.
4}
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Chatbot



What 1s Machine Learning?

“a subset of Al that uses algorithms that give computers the ability

to learn without being explicitly programmed”

Artificial Intelligence in Global Health Defining a Collective Path Forward”, by the Rockefeller Foundation,
USAID, Center for Innovation and Impact, and Bill and Melinda Gates Foundation.

“Machine learning (ML): A subfield of Al that 1s specifically
concerned with learning. ML uses computers to detect patterns in
data and use these patterns to make inferences about unseen data.
Most modern Al applications rely on ML.”

Introduction to Al and Al for Good, Craig Jolley, Ph.D., U.S. Global
Development Lab October 2018



Machine Learning

Traditional coding

.
m/m

Adapted from, “Introduction to Al and Al for Good”, Craig Jolley, Ph.D., U.S. Global
Development Lab, October 2018



Machine Learning

Traditional coding Machine learning

Answers

Adapted from, “Introduction to Al and Al for Good”, Craig Jolley, Ph.D., U.S. Global
Development Lab, October 2018



Machine Learning

Traditional coding Machine learning

=

“Knowledge

Model

“Introduction to Al and Al for Good”, Craig Jolley, Ph.D., U.S. Global Development Lab
October 2018



Use of Machine Learning

* Image classification
— Infer nutrition status from images or videos

— Classification of radiologic images

* Predictive Analytics
— Predict who will give birth at home vs. hospital

— Predict which patients will default from treatment,
or miss their next visit.



Case Study: Using ML to Predict Missed

Appointments by People on ART in Mozambique

Programmatic Challenge Digital Platform
* Mozambique has made great ¢ CommCare has been
progress in scaling up HIV adapted for use in
diagnosis, prevention and Mozambique’s health
treatment services system, with the support of
e However, missed the Ministry of Health and
appointments and USAID

suboptimal retention are still ¢ The local version of
important challenges Comm¢Care is called

Infomovel



Rational for Al

® What if patients at high risk for default could be identified before
they miss appointments? This might enable more efficient and

etfective targeting of interventions

* Dimagi and ICAP proposed using machine learning to develop a

way to identify and flag at-risk patients

®* HRSA supported a rapid program of development and user
feedback, “kick starting” the project via the OpCon funding

mechanism

* All work done in collaboration with MOH and CDC



The Infémovel application supports community-based HIV and TB care in Mozambique.

Patients are first enrolled in HIV care
at the health facility by the facility
focal point.

The facility focal point assigns HIV+
patients to the Community Health
Workers (CHWs) to be followed-up
with in their homes.

Patients and their household
members are visited by the CHW to
reinforce adherence if they are a key
population in follow-up, or if they
have defaulted from their treatment.




Project Objectives

Using machine learning, develop a framework to assign
a defaulter risk score to clients currently in Infomovel

Use the defined framework to assign a “tlag” (e.g., a
visual alert) to the 20% of clients predicted to have the
highest risk of defaulting

Assess the risk scores against historical data and data
from June — August 2018 from 4 sites in 2 provinces, to
determine what percentage of actual defaulters
were/would have been flagged

Obtain user feedback from CHWSs and facility level
statt in two facilities in Nampula Province



Building a Dataset

Site Patients Visits
Akumi 313 910
Muhala 146 487
Namacata 19 88
16 de Junho 13 62
Total 491 1,547

The team’s definition of defaulter was any patient that missed a scheduled visit by 7 days or more.
Additional slides will demonstrate results when visits were missed by 7, 10, 14 and 28 days



Machine Learning Results: Summary

Interpretation for cross facility data

# days a visit was ML Predictor for top

Prevalence Rate

missed by 20% of at-risk
7 31.80% ~50%
10 28.30% ~43%
14 26.20% ~40%

28 19.80% ~ 38%




Refining the Model: Facility-Specific Focus

Results when we build the model for just one site

ML prediction for
20%

Missing days Prevalence Rate

7 35.7% 60%

28 23.1% 45%



Machine Learning Prediction: 7 day Missed Visit Results

Missing visits (7 days) The horizontal line is
100
the sample defaulter
prevalence
80

The blue area of the

60
graph shows us how
20 the true defaulters vary

over risk rankings

Defaulter prevalence =|31.8%

20
The red area of the
graph show us the best
20 40 60 80 100 possible performance the
Percentage of ranked values observed algorithm could do

Percentage of total defaulters identified



Overall Findings

* Machine learning was able to flag the subset of
patients at highest risk ot detaulting

— More work needs to be done to refine the model

* Use of the tlag was of high interest to CHW's
and health facility staff

— Workflows and Infomovel use will need to be
optimized/adapted in order to implement it with
maximal effect



Crawl, Walk, Run

(with your data)

Consistent Data Use
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Feel free to contact me at nlesh(@dimagi.com
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