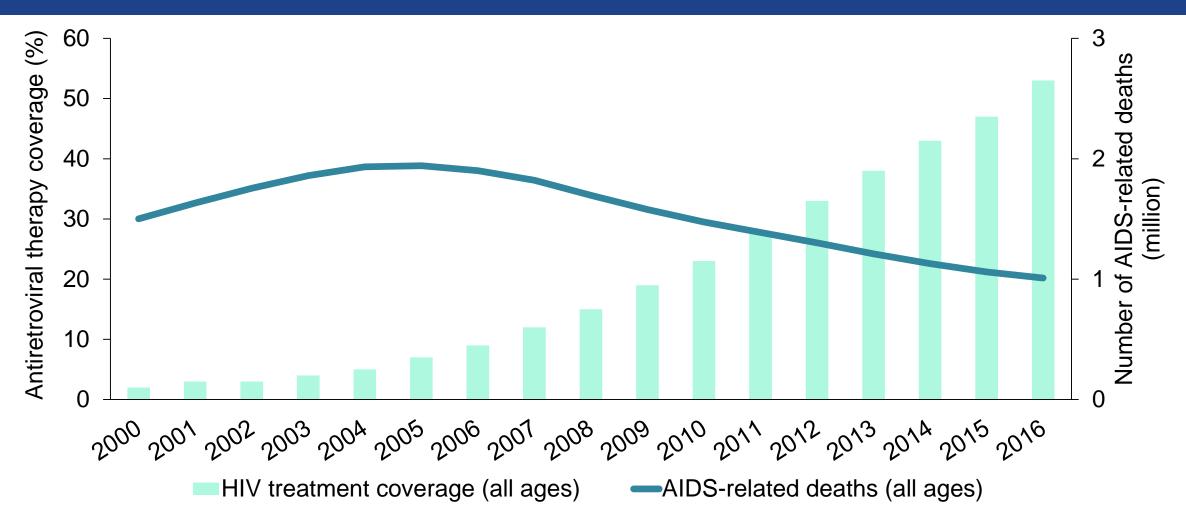
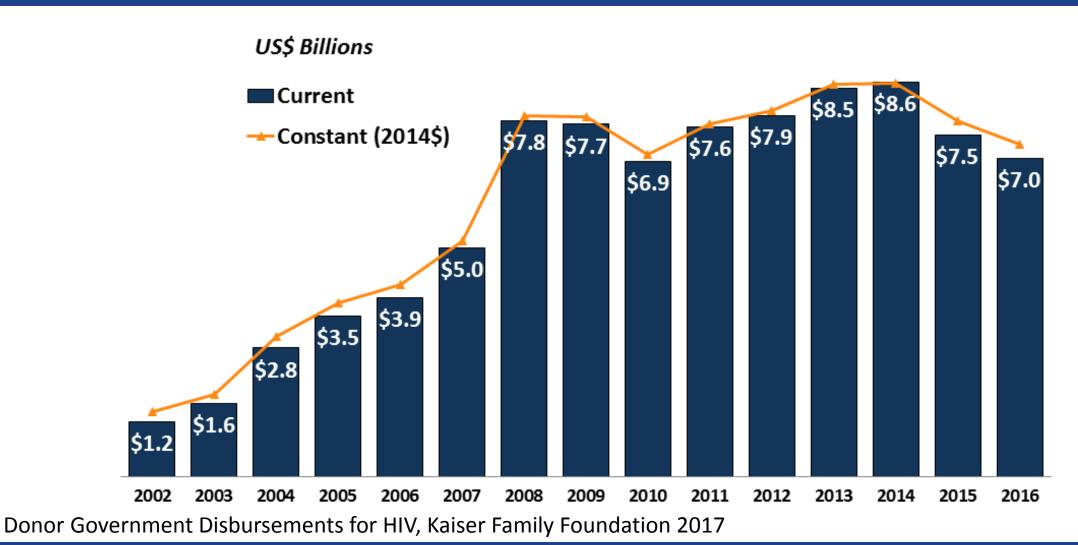
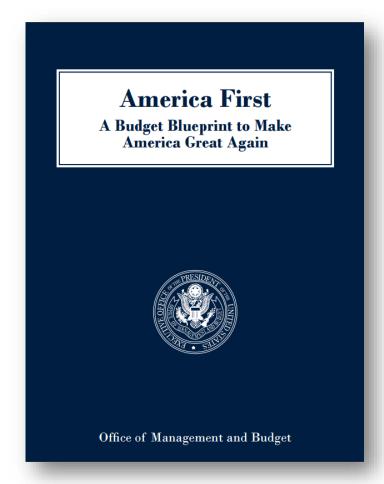
Do Less Harm: Evaluation of Programmatic Options in the Face of Reduced Foreign Aid


Emily Hyle, MD MSc
Division of Infectious Diseases
Massachusetts General Hospital
Harvard Medical School

Disclosures


• I have no financial disclosures

Scale Up Success



UNAIDS Global AIDS Update 2016

Flat Funding over the Past Decade

Scale Back?!

- "Provides sufficient resources to maintain current commitments and all current patient levels on HIV/AIDS treatment under the President's Emergency Plan for AIDS Relief (PEPFAR) and maintains funding for malaria programs."
- Proposed cuts:
 - PEPFAR 18%
 - Global Fund (GFATBM) 17%
 - \$1 billion reduction to State, USAID, and CDC Global Health

White House, Office of Management and Budget 2017

Objective

 What is the best strategy to scale back and achieve budget cuts with the least impact on the epidemic and clinical outcomes?

 We used a simulation modeling approach to evaluate the epidemiologic, clinical, and budgetary consequences of different HIV program scale back strategies

Methods – CEPAC-I Model

- We used the Cost-Effectiveness of Preventing AIDS
 Complications—International (CEPAC-I) microsimulation model
 - Populated with trial and cohort data
 - Case studies: South Africa and Côte d'Ivoire
- Model outcomes:

Epidemiologic: Transmissions

– Clinical: Deaths

Budgetary: \$\$ saved

Current Scale Up

Strategy	Description
Current Scale Up	Enhanced testing, linkage, treatment, and retention

Six Scale Back Strategies

Assumption: commitments to patients already receiving HIV care would continue

Strategy	Description
Current Scale Up	Enhanced testing, linkage, treatment, and retention
1. No New ART	Ongoing care only for established patients
2. Late Presentation	Reduced testing, so patients present at low CD4
3. Reduced ART Eligibility	ART initiated only when CD4 <350 cells/μL
4. Reduced Retention	84% now, decreasing to 70% at 5 years
5. No VL Monitoring	CD4 monitoring only
6. No 2 nd -line ART	One ART regimen only

Strategy	Transmissions (n)	Deaths (n)	Budget (\$ million)
Current Scale Up	3,240,000	4,258,000	32,180

Strategy	Transmissions (n)	Deaths (n)	Budget (\$ million)
Current Scale Up	3,240,000	4,258,000	32,180
	Additional Transmissions	Additional Deaths	Budget Savings (\$ million (%))
1. No New ART	630,000	1,664,000	7,740 (24%)

Strategy	Transmissions (n)	Deaths (n)	Budget (\$ million)
Current Scale Up	3,240,000	4,258,000	32,180
	Additional Transmissions	Additional Deaths	Budget Savings (\$ million (%))
1. No New ART	630,000	1,664,000	7,740 (24%)
2. Late Presentation	470,000	945,000	4,290 (13%)
3. Reduced ART Eligibility	213,000	91,000	50 (0.2%)
4. Reduced Retention	188,000	308,000	1,040 (3%)
5. No VL Monitoring	206,000	46,000	-320 (+1%)
6. No 2 nd -line ART	38,000	31,000	50 (0.2%)

Strategy	Transmissions (n)	Deaths (n)	Budget (\$ million)
Current Scale Up	3,240,000	4,258,000	32,180
	Additional Transmissions	Additional Deaths	Budget Savings (\$ million (%))
1. No New ART	630,000	1,664,000	7,740 (24%)
2. Late Presentation	470,000	945,000	4,290 (13%)
3. Reduced ART Eligibility	213,000	91,000	50 (0.2%)
4. Reduced Retention	188,000	308,000	1,040 (3%)
5. No VL Monitoring	206,000	46,000	-320 (+1%)
6. No 2 nd -line ART	38,000	31,000	50 (0.2%)

Strategy	Transmissions (n)	Deaths (n)	Budget (\$ million)
Current Scale Up	3,240,000	4,258,000	32,180
	Additional Transmissions	Additional Deaths	Budget Savings (\$ million (%))
1. No New ART	630,000	1,664,000	7,740 (24%)
2. Late Presentation	470,000	945,000	4,290 (13%)
3. Reduced ART Eligibility	213,000	91,000	50 (0.2%)
4. Reduced Retention	188,000	308,000	1,040 (3%)
5. No VL Monitoring	206,000	46,000	-320 (+1%)
6. No 2 nd -line ART	38,000	31,000	50 (0.2%)

Scale Back Strategies in Combination

 Scale back strategies can have synergies or antagonisms when deployed in combination

- We also compared projected outcomes between
 - The sum of model outcomes for two scale back strategies alone
 - Model outcomes when two scale back strategies were used in combination

Reducing Both ART Eligibility and Retention

Strategy	Transmissions (n)	Deaths (n)	Budget (\$ million)
Current Scale Up	3,240,000	4,258,000	32,180
	Additional Transmissions	Additional Deaths	Budget Savings (\$ million (%))
3. Reduced ART Eligibility	213,000	91,000	50 (0.2%)
4. Reduced Retention	188,000	308,000	1,040 (3%)
Sum of Individual Strategies	401,000	399,000	1,090 (3%)
In Combination	390,000	395,000	1,050 (3%)

^{**} The impact of both strategies in combination is the same as individually **

Late Presentation and Reduced ART Eligibility

Strategy	Transmissions (n)	Deaths (n)	Budget (\$ million)
Current Scale Up	3,240,000	4,258,000	32,180
	Additional Transmissions	Additional Deaths	Budget Savings (\$ million (%))
2. Late Presentation	470,000	945,000	4,290 (13%)
3. Reduced ART Eligibility	213,000	91,000	50 (<0.1%)
Sum of Individual Strategies	683,000	1,036,000	4,340 (13%)
In Combination	493,000	959,000	4,310 (13%)

^{**} Strategies in combination have reduced clinical downside than individually**

No VL Monitoring and No 2nd-line ART

Strategy	Transmissions (n)	Deaths (n)	Budget (\$ million)
Current Scale Up	3,240,000	4,258,000	32,180
	Additional Transmissions	Additional Deaths	Budget Savings (\$ million (%))
5. No VL Monitoring	206,000	46,000	-320 (+1%)
6. No 2 nd -line ART	38,000	31,000	50 (0.2%)
Sum of Individual Strategies	244,000	77,000	-270 (+1%)
In Combination	234,000	69,000	-80 (+0.2%)

^{**} Strategies in combination have less budgetary impact than individually**

Impact Will Differ Among Recipient Nations

A 10% cut in PEPFAR funding

	South Africa	Côte d'Ivoire
Percentage of overall HIV budget (%)	2%	9%
Reduction in absolute budget (\$)	\$40M	\$20M
HIV prevalence (%)	19.2%	3.2%
Number of PWH affected (n)	6.7 million	440,000

Projected \$ Per Year of Life Lost

 For every year of life lost in South Africa and Côte d'Ivoire, HIV programs will save ~\$600-\$900

 Does imposing such tradeoffs on vulnerable populations accurately reflect how donor countries value life in recipient nations?

Conclusions

 Reduced funding for HIV prevention and treatment will have enormous consequences for the epidemic and for people with HIV, with only modest budgetary savings

 Simulation modeling can assist in highlighting the tradeoffs of difficult choices in policy-making and investments

 Further research is needed to optimize efficiencies in care and to minimize clinical harms if budget cuts are unavoidable

Thank You

United States

Ingrid Bassett, MD, MPH

Ethan Borre

Andrea Ciaranello, MD, MPH

Sydney Costantini

Caitlin Dugdale, MD

Kenneth Freedberg, MD, MSc

Gregg Gonsalves, PhD

Emily Hyle, MD, MSc

Emily Martey

Lucia Millham

Anne Neilan, MD, MPH

A. David Paltiel, PhD

Robert Parker, ScD

Krishna Reddy, MD

Justine Scott, MPH

Madeleine Stern

Rochelle Walensky, MD, MPH

Milton Weinstein, PhD

South Africa

Linda-Gail Bekker, MBChB, PhD

Robin Wood, BMBCh, DSc

Côte d'Ivoire

Xavier Anglaret, MD, PhD

Christine Danel, MD

Serge Eholié, MD, PhD

Eric Ouattara, MD, MPH

Eugène Messou, MD

Supported by:

National Institute of Allergy and Infectious

Disease (R01 Al058736, R37 Al093269)

National Heart, Lung, and Blood Institute

(EPH - K01 HL123349)

Steve and Deborah Gorlin Massachusetts

General Hospital Research Scholars Award (RPW)